Comparison of the susceptibility of wild-type and CYP2E1 knockout mice to the hepatotoxic and pneumotoxic effects of styrene and styrene oxide.

نویسنده

  • Gary P Carlson
چکیده

Styrene causes both liver and lung damage in non-Swiss albino, CD-1, and other strains of mice. This is considered to be due to the bioactivation of styrene to styrene oxide by cytochromes P450, principally CYP2E1 and CYP2F2. If so, one would expect CYP2E1 knockout mice to be less susceptible to styrene-induced toxicity than wild-type mice. However, previous in vitro and in vivo studies demonstrated little difference in the metabolism of styrene to styrene oxide between wild-type and CYP2E1 knockout mice. These findings would suggest that there should be no difference in the toxic responses to styrene between these two strains. To determine which of these possibilities was correct, styrene (600 mg/kg) or styrene oxide (300 mg/kg) was administered i.p. 24 h prior to measurement of serum sorbitol dehydrogenase as a biomarker of hepatotoxicity or lactate dehydrogenase activity, protein, and cells in bronchoalveolar lavage fluid as biomarkers for pneumotoxicity. Styrene was more hepatotoxic in the wild-type mice than in the knockout mice suggesting CYP2E1 activity is important. Strain differences were not observed with styrene oxide indicating no difference in intrinsic susceptibility. For lung, the response was similar in both strains to both styrene and styrene oxide supporting the idea that CYP2F2 is important in the bioactivation of styrene in this tissue and that there is no strain difference in susceptibility to the active metabolite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolism of styrene by mouse and rat isolated lung cells.

Styrene is pneumotoxic in mice. It is metabolized by pulmonary microsomes of both mouse and rat to styrene oxide (SO), presumed to be the toxic metabolite of styrene, and known to be genotoxic. To determine which pulmonary cell types are responsible for styrene metabolism, and which cytochromes P450 are associated with the bioactivation of styrene, we isolated enriched fractions of mouse and ra...

متن کامل

Critical appraisal of the expression of cytochrome P450 enzymes in human lung and evaluation of the possibility that such expression provides evidence of potential styrene tumorigenicity in humans.

Styrene is widely used with significant human exposure, particularly in the reinforced plastics industry. In mice it is both hepatotoxic and pneumotoxic, and this toxicity is generally thought to be associated with its metabolism to styrene oxide. Styrene causes lung tumors in mice but not in rats. The question is how the tumorigenic effect in mouse lung may relate to the human. This review exa...

متن کامل

Investigation of bioactivation and toxicity of styrene in CYP2E1 transgenic cells.

Styrene has been found to be toxic to the respiratory system, and the toxicity of styrene is metabolism-dependent. CYP2E1 is suggested to be one of the cytochrome P450 enzymes responsible for the bioactivation of styrene. Our work focused on the roles of CYP2E1 and epoxide, a metabolite of styrene epoxidation, in the cytotoxicity of styrene. Styrene was found to be more toxic to h2E1 cells than...

متن کامل

Deletion of histidine decarboxylase (HDC) enhances the antinociceptive effects of orexin A in the central nervous system

It has long been established that histamine plays a role as a mediator of inflammation. From numerous studies, it has been well known that the amine has many pharmacological actions on a variety of organs. To evaluate the role of histamine in pain perception, we generated HDC knockout mice using a gene targeting method. Histamine is a hydrophilic autacoid, and in most tissues it is stored and s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicology letters

دوره 150 3  شماره 

صفحات  -

تاریخ انتشار 2004